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Lattice parameters from direct-space images at two tilts
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Abstract

Lattices in three dimensions are oft studied from the ‘‘reciprocal space’’ perspective of diffraction. Today, the full

lattice of a crystal can often be inferred from direct-space information about three sets of non-parallel lattice planes.

Such data can come from electron-phase (or less easily Z contrast images) taken at two tilts, provided that one image

shows two non-parallel lattice periodicities, and the other shows a periodicity not coplanar with the first two. We

outline here protocols for measuring the 3D parameters of cubic lattice types in this way. For randomly oriented nano-

crystals with cell side greater than twice the continuous transfer limit, orthogonal 7151 and 7101 tilt ranges might
allow one to measure 3D parameters of all such lattice types in a specimen from only two well-chosen images. The

strategy is illustrated by measuring the lattice parameters of a 10 nm WC1�x crystal in a plasma-enhanced chemical-

vapor deposited thin film.

r 2002 Elsevier Science B.V. All rights reserved.

PACS: 03.30.þp; 01.40.Gm; 01.55.þb

1. Introduction

In recent years, both the need and ability
to characterize individual nano-crystals has
increased. For example, the scaling down trend
in electronics device and nanomaterials fabrication
has generated tremendous interest in the charac-
terization of submicron and even nanometer
structures [1–4]. In this context, consider the
following thought experiment.
If 10 nm crystals presented themselves to our

perceptions as 10 cm hand specimens, new rules
for direct-space crystallography might have

emerged. Imagine these instructions. Tilt until
you locate a set of 4-fold cross-fringes. If a tilt (at
451 to those fringes) by 35:31 just brings you to a
new set of fringes 15.5% larger in spacing, then the
hand specimen may well be FCC. Its reciprocal
lattice definitely includes a BCC array like that
characteristic of FCC crystals.
The usefulness of this rule, and others like it,

first requires an ability to visualize lattice spacings
projected along the viewing direction [5]. It is also
predicated on an ability to tilt precisely while
keeping the specimen centered over large angles, if
possible observing as one goes. If these things are
possible, then one might be able to quickly, from
lattice images alone, deduce the oriented basis
triplet of an arbitrarily small crystal [6]. By making
use of large angle tilts to high symmetry zones, this
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strategy may be thought of as a less ambitious
version of more general strategies for 3D structure
determination from images [7,8].
By providing simultaneous information on the

location of periodicities as well as periodicity
spacings and directions in arbitrarily small crys-
tals, the technique described here complements the
many diffraction-based techniques for obtaining
crystallographic information from sub-micron
single crystals [9–21]. In addition to the work
mentioned above, it also builds on a wide range of
initiatives for acquiring 3D data from 2D trans-
mission electron microscope (TEM) images
[14,22–27].
The minimum instrumentation consists of a

TEM able to deliver phase or Z contrast lattice
images of desired periodicities (e.g. spacings down
to half the unit cell side for cubic crystals), and a
specimen stage with adequate tilt (e.g. two-axes
with a combined tilt range of 7181). For crystals
with lattice spacings of 0:25 nm and larger, many
analytical TEMs will work, while a high-resolution
microscope with continuous contrast transfer to
spatial frequencies beyond 1=ð0:2 nmÞ can do this
for most crystals. We demonstrate the process
experimentally by determining the lattice para-
meters of a tungsten carbide nano-crystal using a
Philips EM430ST TEM. Appropriately orienting
the crystal, so as to reveal its three-dimensional
structure in images, is a key part of the experi-
mental design and will be discussed in detail.
Given a microscope that (perhaps with compu-

ter assistance) can tilt eucentrically and image
continuously over arbitrary axes, the algorithms
described here may eventually allow rapid deter-
mination of the oriented basis triplet for an
arbitrary nano-crystal, even though the applica-
tions discussed involve cubic-lattice crystals
conveniently oriented by chance. In the process,
strategies for three-dimensional lattice-correlation
darkfield studies of nano-crystalline and para-
crystalline materials are suggested as well.

2. Concept and methodology

The examples treated in this paper are all cubic-
cell systems. However, the equations of this section

apply to lattices of any symmetry. Hence readers
of this section, beyond the overview below, will
benefit from a familiarity with the geometry of
non-cartesian coordinate systems [28,29]. Particu-
larly important is the distinction between rank-one
contravariant and covariant tensors (vectors and
1-forms), or at least between their three-dimen-
sional representations in crystallography [30,31],
i.e. between lattice vectors or zones (denoted by
uvw indices in square or angle brackets) and
reciprocal lattice vectors or planes (represented by
Miller or hkl indices in round or curly brackets).

2.1. Overview: a ‘‘tilt protocol’’ in action

For ‘‘stereo lattice-imaging’’, low Miller index
(hence large) lattice spacings are both easier to see
and more diagnostic of the lattice. Orientation
changes directed toward the detection of such
spacings are needed. In this section, tilt protocols
optimized for getting 3D data from one abundant
class of lattice types (namely cubic crystals) are
surveyed. We begin with a list of candidate lattice
types (e.g. FCC or HCP) based on prior composi-
tional, diffraction, or imaging data.
Three non-coplanar reciprocal lattice vectors

seen along two different zone axes are sufficient for
inferring a subset of the 3D reciprocal lattice of a
single crystal. Often these are adequate to infer the
whole reciprocal lattice. Hence the goal of our
experimental design is to look for at least three
non-coplanar lattice spatial frequencies, in two or
more images. We prefer images with ‘‘aberration
limits’’ ra smaller than the analyzed spacings, to
lessen chances of missing other comparable (or
larger) spacings in the exit-surface wavefield. So as
to tilt from one zone to another, the crystal must
also be oriented so that the desired beam orienta-
tions are accessible within the tilt limits of the
microscope.
To illustrate, we exploit the fact (considered

more fully below) that all cubic crystals will
provide data on their three-dimensional lattice
parameters if imaged down selected zones sepa-
rated by 35:31; provided that spacings at least as
large as half the cell side a are reported in the
images. With the images discussed here we expect
to ‘‘cast a net’’ for 3D data on any cubic crystals
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whose cell side a is larger than 2� 0:19 nm ¼
0:38 nm:More than 85% of the cubic close packed
crystals and nearly 40% of the elemental BCC.
crystals tabulated in Wyckoff [32], for example,
meet this requirement, as of course would most
cubic crystals with asymmetric units comprised of
more than one atom.
Although 35:31 is too far for the eucentric tilt

axis in our microscope, combining two tilts gives
us a range of 35:61: Two images therefore can
be taken at orientations 35:31 apart, namely at
ðW1¼15:01;W2¼9:71Þ and ðW1¼ �15:01;W2¼�9:71Þ;
respectively, where W1 and W2 are goniometer
readings on our double tilt holder. This yields an
‘‘effective’’ tilt axis that runs perpendicular to the
electron beam. Its azimuth is 123:51 in the xy plane
of our images. The coordinate system used will be
discussed in more detail later. For the special case
of FCC crystals, the zones of interest are [0 0 1]
and [1 1 2]. Since the ð2 %2 0Þ lattice planes are
parallel to both desired zones, the tilt must be
along these planes. That is, (2 0 0) fringes seen
down a 4-fold symmetric [0 0 1] zone must make an
angle of about 451 with respect to the effective tilt
axis. Nearly a third of the randomly oriented
crystals showing [0 0 1]-zone fringes will be
sufficiently close [33].
The experimental results were unambiguous. We

found many 4-fold symmetric images having
spacings consistent with WC1�x: This has an
FCC lattice with a ¼ 0:4248 nm [34,35]. When
such a zone was found with fringes making 451 to
the effective tilt axis in the first image, a new
spacing was seen in the second image making a
3D lattice parameter measurement possible. The
experiment is illustrated in Fig. 1.

2.2. Experimental designs

Here we seek three non-coplanar periodicities
from two images (although the analysis also works
if they are discovered singly in three images).
Given Miller indices ðh1 k1 l1Þ and ðh2 k2 l2Þ for any
two periodicities (i.e. vectors g1 and g2; respec-
tively, in the reciprocal lattice) of a crystal, first
find zone indices ½uA vA wA� of the beam direction
rA 	 g1 � g2 needed to view both spacings in one
image. The axis for the smallest tilt that will make

the beam orthogonal to a third periodicity with
indices ðh3 k3 l3Þ; and reciprocal lattice vector g3;
may then be defined by the vector vt 	 g3 � rA:
Lastly, zone indices ½uB vB wB� for the beam after
the specimen has been tilted around this axis so as
to image the third periodicity, may be obtained
from the expression rB 	 vt � g3: Note here that
we treat the Bragg angle for electrons as small (i.e.
less than one degree). Thus the actual tilt required
will be a fraction of a degree less.
Although these cross-product calculations can

be done by first converting for example to ‘‘c-axis’’
cartesian coordinates [15], the simplest determina-
tion of needed parameters is perhaps done using
the metric matrix G of a prospective lattice [36]

G 	

a
a a
b a
c

b
a b
b b
c

c
a c
b c
c

264
375: ð1Þ

If we denote row vectors formed from Miller (or
lattice) indices as /i j kj; and column vectors as
ji j kS; then the zone A indices obey g1
rA ¼
/h1 k1 l1juA vA wAS ¼ 0 and g2
rA ¼ /h2 k2 l2j
uA vA wAS ¼ 0: From these two equations,
½uA vA wA� follows except for a multiplicative
constant which is not important. Similarly, the
(possibly irrational) Miller indices of the tilt axis
ðht; kt; ltÞ may be determined from gt
rA ¼
/ht kt ltjuA vA wAS ¼ 0 and vt
g3 ¼ 0 ¼ /ht kt ltj
G�1jh3 k3 l3S [31]. Only in this fourth equality does
G affect the calculation, and for cubic crystals it
then simply offers a multiplying constant. Finally,
the zone B indices follow (to within a factor)
simply from gt
rB ¼ /ht kt ltjuB vB wBS ¼ 0 and
g3
rB ¼ /h3 k3 l3juB vB wBS ¼ 0:
Two parameters which determine the attractive-

ness and feasibility of a given experiment are the
spatial resolution, and range of specimen tilts, that
the microscope is able to provide. For a given
lattice type, it is useful to: (i) go through the list of
all pairs of periodicities and calculating the tilt
between the zone associated with that pair and any
third spacing of possible interest, and (ii) rank the
findings according to the minimum spacing that
must be resolved, and the range-of-tilt that the
specimen undergoes. The protocols for FCC, BCC
and simple cubic lattices are plotted as a function
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of resolved spacing and required tilt in Fig. 2.
Specifics from the microscope operator’s point of
view for all FCC and BCC protocols which involve
spacings no less than half of the cell side are
illustrated in Fig. 3. Note that this calculation
needs to be done only once for each unit cell shape.
Factors like the multiplicity of a given zone type
might also figure into the design of experiments
with randomly oriented crystals, although we have
not considered them here.
High tilts can be used to lower measured spacing

uncertainties, in directions perpendicular to the
electron microscope specimen plane [6]. Hence, the
protocols of interest for a given experiment may be
those which approach goniometer tilt limits, or at
least the limits of specimen tiltability.

Concerning the resolution limit to use, we
suggest the spacing associated with the end of
the first transfer function passband in the micro-

graph of interest, sometimes inferrable from
regions in the image showing disordered material.
Even in this case, possible thickness and misor-
ientation effects warrant caution [37,38].
One may of course explore spatial frequencies in

the specimen up to the microscope information
limit. However, spherical aberration zeros in the
transfer function introduce the possibility that the
microscope will suppress some spatial frequencies
present in the subspecimen electron wavefield. To
lessen this problem, HREM images taken at
different focus settings could be compared, if the
foci were chosen so that spatial frequencies lost at

Fig. 1. The tilt protocol for inferring the lattice structure of FCC WC1�x by viewing a WC1�x crystal from its [0 0 1] zone and [1 1 2]

zone, along which the two most easily resolved lattice plane sets, the f2 0 0g and f1 1 1g lattice planes, will show lattice fringes in
HRTEM images. The two zones are 35:31 apart, just within the tilting limits of a Philips EM430ST with a Gatan double tilt holder.
Also find experimental HRTEM images of a WC1�x nano-crystal acquired using this protocol, via the tilt path shown schematically in

the stereo map at bottom right. Such high-tilt protocols for determining the oriented basis triplet of a nano-crystal lattice are discussed

in this paper.
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one defocus are likely recorded at another. This
would allow measurement of three non-coplanar
reciprocal lattice vectors, without missing any
whose (reciprocal) length is shorter than the
longest among those three.
Lastly, of course, the protocol chosen may

depend also on the specimen. For an image field
containing hundreds of non-overlapping but ran-
domly oriented nano-crystals, only two micro-
graphs could allow one to measure the three-
dimensional lattice parameters of all cubic crystal
types present with cell sides a greater than 2ra: On
the other hand, for a single crystal specimen of
unknown structure, both a great deal of tilt range,
and considerable trial and error tilting (or guess
work based on lattice models) might be required

before a single set of three indexable non-coplanar
spacings is found. With sufficiently stable compu-
ter-controlled tilting and eucentricity correction,
of course, automated basis triplet determination
for arbitrary unknowns is a future possibility.

2.3. Inferring 3D reciprocal lattice vectors from

micrographs

Consider a specimen stage with two orthogonal
tilt axes (and associated rotation matrices) T1 and
T2; both perpendicular to the electron beam (the
second only so when the first axis is set at zero tilt).
When the specimen is untilted ðW1 ¼ 01; W2 ¼ 01Þ;
vectors in the reciprocal lattice of the specimen
may be described, in coordinates referenced to the

Fig. 2. Tilt protocols for determining the lattice parameters of FCC, BCC, and simple cubic crystals from two high-resolution images,

plotted according to the required tilt range, and required resolution limit in units of the cubic cell side. Superimposed on this plot are

the tilt range, and resolution in units of the unit cell side a ¼ 0:4248 nm of WC1�x; required for the experiment reported here.
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microscope, as column vectors jgS: When this
reciprocal lattice vector is tilted to intersect the
Ewald sphere by some double tilt in the sequence
T2ðW2Þ then T1ðW1Þ; its presence may be inferred
from diffraction patterns or micrograph power
spectra. In our fixed coordinate system, jgS has
become jgmS; where the m means that jgmS is
associated with the lattice periodicity dm ¼ 1=gm

recorded on a micrograph. Using matrix notation,
we might then write

jgmS ¼ T1ðW1ÞT2ðW2ÞjgS: ð2Þ

Components of gm may be determined from the
polar coordinates ðg;jÞ of a spot in the power

spectrum of a recorded image, following:

jgmS 	

gmx

gmy

gmz

0B@
1CA ¼ g

cosðjÞ

sinðjÞ

0

0B@
1CA; ð3Þ

where g is the length of the diffraction vector (e.g.
in reciprocal nm) and j is its azimuth corrected for
lens rotation.
Hence, we can calculate the ‘‘untilted-coordi-

nates’’ jgS; of reciprocal lattice objects at jgmS
inferred experimentally from micrographs, using

jgS ¼ T�1
2 ðW2ÞT�1

1 ðW1ÞjgmS ¼ AðW1;W2ÞjgmS; ð4Þ

Fig. 3. Illustration of all ways (from Fig. 2) to verify the three-dimensional lattice parameters of FCC and BCC crystals from a pair of

lattice images, given an ability to image only lattice spacings down to half the unit cell side, and a tilt range of less than 601: The image
pairs are rotated so as to illustrate the direction of tilt between the two zones (crystal orientations) involved. The protocols shown with

double arrows provide access to cross-fringes (and hence information on which direction to tilt) at both ends of the tilt sequence. Also

note that the first and last entries in each column simply provide low- and high-resolution views, respectively, of the same experiment.
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where we have defined

AðW1;W2Þ 	 T�1
2 ðW2ÞT�1

1 ðW1Þ: ð5Þ

The resulting xyz coordinates of reciprocal
lattice features g; associated with the crystal while
in the untilted goniometer specimen orientation,
but referenceable from micrographs taken at any
orientation, provide the language we use for
speaking of our measurements in three dimensions.

2.4. Calculating lattice parameters

Given 3D cartesian coordinates of ‘‘points’’ in
the reciprocal lattice of a crystal, we are in much
the same situation as if we had diffraction patterns
of the crystal from two directions containing three
(or more) non-coplanar spots. Hence methods for
stereo-analysis of diffraction data [15,16] can be
used at this point. We summarize in this context
briefly. Given measured reciprocal lattice vector
coordinates, a natural next step is to infer a basis
triplet for the crystal’s reciprocal lattice. Three
alternate paths to this basis triplet might be
referred to as ‘‘matching’’, ‘‘building’’ [16], and
‘‘presumed’’ [15].
Given an experimental basis triplet from any of

these sources, lattice parameters ða; b; c; a;b; gÞ;
goniometer settings for other zones, and many
other things follow simply from the oriented triplet
matrix defined below

W 	

ax ay az

bx by bz

cx cy cz

264
375 ¼

an
x bn

x cnx

an
y bn

y cny

an
z bn

z cnz

264
375
�1

: ð6Þ

Given W ; for example, cartesian coordinates in

the microscope for any direct lattice vector with
indices ½u v w� follow from jrS ¼ W ju v wS; while
cartesian coordinates for the reciprocal lattice
vector with indices ðh k lÞ may be predicted from
/gj ¼ /h k ljW�1: These rules of course include
instructions for calculating basis vectors of the
lattice, such as a 	 ½1 0 0�; and reciprocal lattice,
such as bn 	 ð0 1 0Þ; and the angles between.
Moreover, the oriented cartesian triplet W is
simply related to the metric matrix for the lattice
in Eq. (1) by G ¼ WWT: From G; of course, all the
familiar orientation-independent properties of the

lattice follow [31], including cell volume Vcell
¼

ffiffiffiffiffiffi
jGj

p
; Miller/lattice vector dot products

/ghkl jruvwS ¼ /h k lju v wS; reciprocal lattice vec-
tor and interplanar spacing magnitudes g2hkl ¼
1=d2hkl ¼ /h k ljG�1jh k lS; lattice vector magni-
tudes r2uvw ¼ /u v wjGju v wS; reciprocal lattice
dot products /g1jg2S ¼ /h1 k1 l1jG�1jh2 k2 l2S;
interspot angles y12 ¼ cos�1½/g1jg2S=ðg1g2Þ�; etc.
Even before a basis triplet is selected, indexing

of observed reciprocal lattice vectors g can be
attempted by matching spacings and interspot
angles to candidate lattices. Because of the
uniqueness of non-coplanar triplets in three dimen-
sions (providing at least a significant subset of the
whole reciprocal lattice), the matches are very
discriminating (even for low-symmetry lattices)
relative to similar analyses from 2D data, i.e. from
only a single image or diffraction pattern. After a
basis triplet is selected, the indices ðh k lÞ of any
observed spot /gj in a diffraction pattern follows
from /h k lj ¼ /gjW : Similarly, indices ½u v w� of
any observed lattice periodicity jrS in an image
follow from ju v wS ¼ W�1jrS; once a basis triplet
is in hand. Given the triplet one can similarly
calculate goniometer settings to align the beam
with any other crystallographic zone of interest.

3. The experimental setup

3.1. Instruments

The Philips EM430ST TEM used is housed in a
triple-bi/story building designed for low vibration,
and provides continuous contrast transfer to
B1=ð0:19 nmÞ at Scherzer defocus. It is equipped
with a7151 side-entry goniometer specimen stage.
A Gatan double tilt holder enables 7101 tilt
around an orthogonal tilt axis. The largest
orientation difference which can be achieved using
this double tilt holder in the microscope is there-
fore 35:61 [39].

3.2. Determining the angle of effective tilt projected

onto an image

In order to establish the spatial relationship
between reciprocal lattice vectors inferred from
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images taken at different specimen tilts, the
direction of the tilt axis relative to those images
must be known. The tilt axis direction is defined
via the right hand rule, as orthogonal to the
relative motion of parts of the specimen as the
goniometer reading is increased. In a single tilt,
the axis is perpendicular to the electron beam and
parallel to the micrographs. This is true also of the
effective tilt axis in a double tilt, provided the two
specimen orientations are symmetric about the
zero tilt position. We limit our discussion of
double tilts to this case.
We determined the projection of both tilt axes of

a Gatan double tilt holder onto 700 K HREM
images by examining Kikuchi line shifts during tilt
in the 1200 mm diffraction pattern of single crystal
silicon, and then correcting for the rotation
between that diffraction pattern and the image
[33]. To be specific, with a micrograph placed in
front of the operator with emulsion side up as in
the microscope, with zero azimuth defined as a
vector from left to right, and with counterclock-
wise defined as the direction of increasing azimuth,
the projection of the T1 axis on 1200 mm camera-
length diffraction patterns in our microscope is
along 114:01: The rotation angle between electron
diffraction patterns at the camera length of
1200 mm and 700 K HREM images is 42:91:
Therefore, the direction of the projection of T1
on 700 K HREM images is along �156:91: The
direction of the projection of the second tilt axis,
T2; on 700 K HREM images is along 113:11:

3.3. A reference coordinate system

We then consider a coordinate system fixed to
the microscope, for measuring reciprocal lattice
vectors from the power spectra of 700 K HREM
images. The y and z directions are defined to be
along �T1 and the electron beam direction,
respectively, as shown in Fig. 4. The projection
of these tilts on the stereo map of a 700 K HREM
image is shown in Fig. 1. Azimuths in the
remainder of this paper are all measured in the
xy plane of this coordinate system, with the x or
T2 direction set to zero. Because the T1 direction is
defined in our coordinate system as the negative
y-direction, azimuthal angles are measured on

micrographs from a direction 901 clockwise from
the T2 direction, when the emulsion side is up.

3.4. Double tilting

The specimen was first tilted about T2 to W2 ¼
9:71 while W1 remained at 01; made eucentric, then
tilted about T1 to W1 ¼ 15:01: The first HREM
image was taken at this specimen orientation
of ðW1 ¼ 151;W2 ¼ 9:71Þ: A similar sequence was
applied to take a second HREM image at the
second specimen orientation of ðW1 ¼ �151;W2 ¼
�9:71Þ: The process can be modeled with a simple
matrix calculation [13,40].

Fig. 4. A schematic illustration of the coordinate system setup

for measuring reciprocal lattice vectors. The coordinate system

is fixed to the microscope. The y- and z-axis are defined to be

along �T1 and the electron beam direction, respectively. The

projections of T1 and T2 on 700 k� magnification micrographs,
as well as of T1 on 1200 mm diffraction patterns, are shown as

well.
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Because of the importance of repeatable quanti-
tative tilts, effects of ‘‘mechanical hysterisis’’ were
minimized by inferring all relative changes in tilt
from goniometer readings taken with a common
direction of goniometer rotation. The rotation
sequences were ‘‘initialized’’ by first tilting past the
starting line, and then returning to it in the
direction of subsequent motion. Nonetheless both
the precision of angle measurement, and our
inability to observe lattice fringes during rotation,
were shortcomings that microscopes designed to
apply these strategies routinely must address.

3.5. Specimen preparation

The tungsten carbide thin film was deposited by
PECVD on glass substrates by introducing a
gaseous mixture of tungsten hexacarbonyl and
hydrogen into a RF-induced plasma reactor at a
substrate temperature of 3301C [41]. The specimen
was disk-cut, abraded from the glass substrate side
and dimpled by a Gatan Model 601 Disk Cutter, a
South Bay Technology Model 900 Grinder and a
Gatan Model 656 Precision Dimpler, respectively.
The specimen was then argon ion-milled by a
Gatan DuoMill for about 5 h to perforation prior
to the TEM study, at an incidence angle of 31:

4. Experimental results

4.1. Diffraction from a known to check column

geometry

Calibration of these algorithms with geometry
in our microscope was first done with diffraction
data from a Si crystal. Diffraction patterns of
/1 0 0S Si along the ½1 %1 %6� and ½1 %1 6� zone axes
were obtained by tilting about T1 and T2: The
lattice parameters determined are ða ¼ 0:383 nm;
b ¼ 0:387 nm; c ¼ 0:386 nm; a ¼ 60:01; b ¼ 119:61;
g ¼ 119:11Þ: This set of chosen basis defines
the rhombohedral primitive cell of the Si FCC
lattice. Compared with the literature values of Si
ða¼0:384 nm; b¼0:384 nm; c¼ 0:384 nm; a ¼ 601;
b ¼ 1201; g ¼ 1201Þ; the angular disagreements are
less than 11 and spatial disagreements are less than
1%. These uncertainties are comparable to those

obtained by other techniques of submicron crystal
analysis [9,11,13,16,40].

4.2. Nano-crystal images to infer lattice parameters

of an unknown

The micrographs in Fig. 1 show a nano-crystal
in a film rich in tungsten carbide, at the orienta-
tions of ðW1 ¼ 151; W2 ¼ 9:71Þ and ðW1 ¼ �151;W2 ¼
�9:71Þ; respectively. The coordinates of periodi-
cities in micrograph power spectra, as well as
in the common reference coordinate system, are
listed in Table 1, in much the same format as is
diffraction data for stereo analysis [16].

4.2.1. Matching the lattice

The lattice spacings and inter-spot angles of
periodicities in image power spectra were used to
look for consistent indexing alternatives from a set
of 36 tungsten carbide and oxide candidate lattices
including WC1�x:When an angular tolerance of 21
and a spatial tolerance of 2% are imposed, only
WC1�x provides a consistent indexing alternative.
As summarized in Table 2, the Miller indices of the
three observed spots then become (2 0 0), (0 2 0)
and ð1 1 %1Þ: The images of Fig. 1 thus represent
WC1�x [0 0 1] and [1 1 2] zones, respectively. The
azimuth of the reciprocal lattice vector ð2 %2 0Þ

jð2 %2 0Þ ¼
ðjð2 0 0Þ þ ½1801þ jð0 2 0Þ�Þ

2
¼ 123:81 ð7Þ

deviates from the projection of the effective tilt
axis by only 0:31: Therefore the ð2 %2 0Þ lattice
planes are perpendicular to the effective tilt axis as
per Fig. 3, and the data acquired are consistent
with the expectation for fcc crystals outlined in

Table 1

The g-spacings ½nm�1� and azimuths ½1� of three spots measured
from the power spectra of images at two tilts, as well as

calculated Cartesian coordinates ½nm�1� of those reciprocal
lattice spots in a common coordinate system. This constitutes a

minimal data set for analyzing the lattice in three dimensions

Spot n gm jm W1 W2 gx gy gz

1 4.73 79.2 �15.0 �9.7 0.861 4.53 �1.01
2 4.77 �11.6 �15.0 �9.7 4.52 �1.15 �1.03
3 4.14 32.6 +15.0 +9.7 3.37 2.04 1.27
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Fig. 1. The actual tilting path in the Kikuchi map
is shown there as well.
From the indexing suggested by this match, the

x; y; and z coordinates of the reciprocal lattice
basis vectors an; bn; and cn may be inferred. This is
shown in Table 3, along with the resulting lattice
parameters and a comparison with literature
values. The resulting errors in a and b are less
than 1.3%, while the error in c (which is
orthogonal to the plane of the first image) is larger
(around 2.3%). Both because of tilt uncertainties
and reciprocal lattice broadening in the beam
direction, uncertainties orthogonal to the plane of
the specimen are expected to be larger than in-
plane errors [6].

4.2.2. Building a triplet from scratch

By generating linear integral combinations of
the measured periodicities in reciprocal space (i.e.
vector triplets of the form n1g1 þ n2g2 þ n3g3;
where the ni are integers) until a minimal volume
unit cell is obtained (there will be more than one
way to achieve the minimum), a primitive triplet
for the measured lattice can be inferred quite
independent of any knowledge of candidate
lattices. The primitive cell parameters determined
are also listed in Table 3. With respect to literature
values, these show spatial disagreements of less
than 1.5%, and angular disagreements of less than
1:61: Although inference of the ‘‘conventional cell’’
from the primitive cell alone is possible, the
process has not been attempted here because of
complications attendant to measurement error.

4.2.3. Phase identification

Determining a reciprocal lattice triplet, and
inferring lattice parameters therefrom, are of
course not equivalent to confirming the existence
of a particular phase. In order to draw a more
robust conclusion about the makeup of the
unknown crystal, we extended our analysis of the
structure to other lattices capable of indexing the
observed spots, albeit with larger errors in spacing
and interspot angle. When the spatial and angular
tolerances of our candidate match analysis are
increased to 31 and 3%, there are many tungsten
oxide and carbide candidates in addition to WC1�x

which show consistent lattice spacings and inter-
planar angles [41].
In order to eliminate these candidates, it was

necessary to confirm, using power spectra of
amorphous regions in each image, that the spatial
frequencies in Fig. 1 images were continuously
transferred within the first passband [37,42]. By
then assuming that projected reciprocal lattice
frequencies make their way into the exit surface
wavefield (at least at the thin edges of the particle),
all the candidates except WC1�x are eliminated.
Specifically, it was found that for each of the
candidates except WC1�x; along one or more of
the suggested zone axes at least one reciprocal
lattice vector shorter than the experimental
one(s) is missing in a power spectrum [41]. An
example of this is the match with hexagonal WCx

Table 2

The results of a three-dimensional match of measured spacings

[nm] and interspot angles ½1�; with those predicted from the

literature (denoted with a caret) for the FCC crystal WC1�x:
This phase is the only one from a list of 36 tungsten carbides

and tungsten oxides whose predicted spacings and interspot

angles agreed the measurements within a tolerance of 1.5% and

1:51; respectively

Spot n dn jijan ðh k lÞ ddhkldhkl
dd
d
½%� djijanjijan dj

1 0.212 54.2 (2 0 0) 0.212 0.5 54.7 0.5

2 0.209 56.2 (0 2 0) 0.212 1.4 54.7 1.5

3 0.242 90.8 ð1 1 %1Þ 0.245 1.2 90.0 0.8

Table 3

Primitive (top) and face-centered (bottom) reciprocal lattice

basis triplets (spacings in nm, angles in degrees) inferred from

our two HREM images of the unknown crystal, along with a

comparison of the lattice parameters for each cell which follow

therefrom. The indexing of the observed reciprocal lattice

vectors in these two cases was inferred directly for the primitive

cell, by minimizing cell volume, and by matching to ‘‘textbook’’

parameters for WC1�x in the case of the face-centered cell.

Except for the choice of basis triplet, the two measured cells

refer to exactly the same inferred lattice

Measured 0.298 0.299 0.296 120.0 58.7 119.8

‘‘Book’’ 0.300 0.300 0.300 120 60 120

Params a b c a b g

‘‘Book’’ 0.425 0.425 0.425 90 90 90

Measured 0.424 0.419 0.415 88.5 90.8 89.3
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ða ¼ 1:058 nm; c ¼ 1:335 nmÞ: In this case the
Miller indices suggested for spot 3 ð%4 2 %2Þ were
inconsistent with the fact that the ð%2 1 %1Þ is absent
from the power spectrum of the image on the right
side of Fig. 1.
Our conclusion that ‘‘this crystal is WC1�x’’

(and as we see later most of the other crystals in
the specimen) is consistent with knowledge of the
formation conditions, as well as with X-ray
powder and EDS analysis of the same film.

4.3. The effective tilt direction, and recurring

fringes

In addition to serving as a guide for correctly
choosing the azimuth of the crystal before tilting
between desired zones, knowledge of the tilt axis
direction plays another role: that of highlighting
lattice fringes present in both specimen orientations,
but caused by one and the same set of lattice planes.
In single tilt experiments, the tilt axis is simply

T1: This is always perpendicular to the electron
beam and hence parallel to the micrographs. Any
reciprocal lattice vector parallel or antiparallel to
T1 remains in Bragg condition throughout the
whole tilting process, regardless of the amount of
tilt W1: If the spacing is large enough to be recorded
in the images, the same lattice fringes are seen
perpendicular to the projection of T1 in any
HREM image as well.
For double tilt experiments, it is convenient to

introduce the concept of an effective tilt axis. The
effective tilt axis is analogous to the tilt axis in a
single tilt experiment, in that the double tilt can be
characterized by a single tilt around the effective
tilt axis of angular size equal to that in the double
tilt. This effective axis is perpendicular to the
electron beam and hence parallel to the micro-
graphs only if the two specimen orientations are
symmetric about the untilted position.
Considering only double tilts falling into this

category, let ðW1;W2Þ and ð�W1;�W2Þ denote
the specimen orientations before and after. The
effective tilt axis direction has an azimuth (with
respect to our reference x-direction) of

jeff ¼ tan
�1 �

sinðW1Þ
tanðW2Þ

� �
: ð8Þ

A proof of equation (8) is given in Appendix A.
There exists a 1801 ambiguity in the direction of
the effective tilt axis using Eq. (8). This ambiguity
can be resolved through the knowledge of the
actual tilting sequence. In our experiment W1 ¼
151; W2 ¼ 9:71;jeff ¼ 123:51: This is the effective
tilt axis direction mentioned in previous sections.
Lattice planes perpendicular to the effective tilt

axis, in the double tilt case, diffract and are visible
at initial and final, but not intermediate, specimen
orientations. This result inspired further experi-
mental work on, and modeling of, fringe visibility
loss during tilt [43]. One result of this exercise was
a prediction that 0:213 nm fringes deviating by as
much as 41 from the effective tilt direction in a
10 nm WC1�x specimen will remain visible after a
35:61 tilt. This was confirmed by experiment on
these specimens [33]. The result in turn serves to
constrain the probability and error analyses below.

4.4. Tilt limitations and chances for success

This section addresses the chances for successful
3D cell determination from images, depending on
properties of both microscope and specimen. Such
matters are considered in more detail elsewhere
[33].
In a microscope with a single-axis tilt of at least

735:31 and a stage capable also of 1801 rotation,
any cubic crystal with an [0 0 1] zone in the beam
direction at zero tilt can be re-aligned by azimuthal
rotation until its ð2 %2 0Þ reciprocal lattice vector is
parallel to T1: With an untilted tilt-rotate stage,
this would allow a crystal’s [0 0 1] zone to remain
aligned with the beam throughout the rotation.
Subsequent tilting by 35:31 will lead to the [1 1 2]
zone, and the lattice structure in three dimensions
confirmed ala Fig. 1.
Under these conditions, any cubic crystal

showing [0 0 1] zone cross-fringes can be tilted so
as to reveal a third spacing. Hence the probability
of success with any given crystal is that of finding a
randomly oriented crystal oriented with [0 0 1]-
zone fringes visible. Fortunately for this method,
the spreading of reciprocal lattice points due to
finite crystal thickness t allows one to visualize
fringes within a half angle Yt of order 1=t
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surrounding the exact zone axis. Otherwise, cross-
fringes would be rare indeed!
The solid angle subtended by this visibility range

for lattice planes intersecting along the [0 0 1]-zone
allows us to calculate the probability that a
randomly oriented crystal will show cross-fringes
of specified type. For example if we approximate
the cross-fringe region with a conical bundle of
directions about each zone, then for the special
case of spherical particles the fraction of crystals
showing the fringes of zone x is

px ¼ nð1� cos½Yt�Þ;

where Yt ¼ arcsin
g2 � g2t þ 2glgtffiffiffi

2
p

ggl

" #
;

n is multiplicity of zone x (e.g. n ¼ 3 for cubic
x ¼ ½0 0 1�Þ; g ¼ 1=d; gl ¼ 1=l; and gt ¼ f =t;
where t is the thickness of the crystal in the
direction of the beam and f is a parameter of
order one that empirically accounts for signal to
noise in the method used to ‘‘visualize’’ fringes
[44]. For example, we expect f to decrease if an
amorphous film is superimposed on the crystals
being imaged. The half-angle Yt is a pivotal
quantity in both the probability and accuracy of
fringe measurement.
A plot of the probability for seeing [0 0 1] cross-

fringes of spacing d ¼ 0:212 nm; as a function of
specimen thickness t for spherical particles, is
shown in Fig. 5. Here we have used fit parameter

Fig. 5. A plot of the fraction of randomly oriented grains of WC1�x showing [0 0 1]-zone cross fringes (px), and the fraction of such

cross-fringe grains oriented so that a random tilt of 35:31 will allow imaging of a f1 1 1g periodicity (p3), as a function of specimen
thickness in the direction of the electron beam. The line labeled pxp3 is the fraction of randomly oriented crystals (as a function of

crystal size) identifiable via this protocal in a pair of HRTEM images taken at orientations separated by 35:31:
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f ¼ 0:79 based on data points (also plotted) that
were obtained experimentally for particles of
varying size from HREM images of Au/Pd
evaporated onto a carbon film. As you can see,
the probability of encountering cross-fringes im-
proves greatly as crystallite size decreases toward a
nanometer. Of course, as discussed in the next
section, this ‘‘reciprocal lattice broadening’’ is
accompanied by a decrease in the precision of
measurements for individual lattices.
Due to the tilt limits of the specimen holder in

our microscope, the first HREM image along the
[0 0 1] zone of a WC1�x nano-crystal had to be
taken at a non-zero W1 orientation. Azimuthal
symmetry is thus broken. Our solution was to find
a [0 0 1] nano-crystal whose ð2 %2 0Þ reciprocal
lattice vector was by chance parallel to the
effective tilt axis, then tilting to the 2nd orienta-
tion. Thus the nano-crystal in Fig 1 was identified
(by coincidence) to have an appropriate azimuth
during real time study of the (2 0 0) and (0 2 0)
lattice fringes. Tilting by 35:31 was done thereafter.
For the probability of success in our case, we

must multiply px by the probability of viewing
(1 1 1) fringes after tilting a [0 0 1] crystal with
random aziumth by 35:261: This probability of
finding a third spacing takes the form p3 ¼ md=p;
where m is the multiplicity of target spacings (e.g.
m ¼ 4 for a 4-fold symmetric [0 0 1] starting zone),
and the ‘‘azimuthal tolerance half-angle’’ d (again
in the spherical particle case) obeys the implicit

relation:

yo ¼ arctan
tan yo

cos d

� �
þ arctan

cos g

sin2 g� ðcos yo sin dÞ
2

� �
;

where yo is the required tilt (in our case 35:261) and

g ¼ arccos
g2 � g2t � 2glgt

2ggl

� �
:

The probability p3 is also plotted as a function of
specimen thickness in Fig. 5, along with the
product pxp3:
These models predict a probability of success

with the strategy adopted in our experiment, for
the ‘‘large’’ 10 nmWC1�x crystals in our specimen,
of pxp3 ¼ 1:38� 10�3 � 0:325 ¼ 4:5�10�4: Hence
only one in every 700 crystals will show [0 0 1]
cross-fringes, and one in every 2000 will be
suitably oriented for 3D lattice parameter deter-
mination. This is consistent with our experience:
the image of crystal A was recorded in one
negative out of 22, each of which provided an
unobstructed view of approximately 100 crystals.
As mentioned above, using a microscope cap-

able of side-entry goniometer tilting by 735:31
with a tilt-rotate stage, the 3D parameters of all
cubic crystals, when untilted showing [0 0 1] zone
cross-fringes, could have been determined. Ac-
cording to Fig. 5, the fraction of particles 2 nm in
thickness that are oriented suitably for such

Fig. 6. Visibility maps for the two largest fringes visible from body-centered, face-centered, and diamond face-centered lattices. Sphere

diameter (relative to bandwidth and fringe spacing) is proportional to specimen thickness, here chosen to be about 5 times the cubic cell

side a:Note the dominance of crossed f1 1 0g fringes at the 3-fold /1 1 1S zone in the body-centered case, the dominant crossed f1 1 1g
fringes at the 2-fold /1 1 0S zone in the face-centered cases, and the wider disparity between largest and next-to-largest spacings when
the diamond glide is added to the lattice.
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analysis approaches 1 in 100. Moreover, with a
goniometer capable of tilting by 7451 plus
computer support for automated tilt/rotation from
any starting point, each unobstructed nano-crystal

in the specimen could have been subjected to this
same analysis after a trial-and-error search for
accessible [0 0 1] zones. Thus a significant fraction
of crystals in a specimen become accessible to these
techniques, with either a sufficient range of precise
computer-supported tilts, or if the crystals are
sufficiently thin.
Subsequent work [45] has shown that informa-

tion on tilt protocols and fringe visibility for
crystals of a given thickness can be elegantly
summarized with spherical maps like those in
Fig. 6. These are a direct-space analog to recipro-
cal-space Kikuchi maps, in which band thickness is
proportional to d (rather than 1=d). If the sphere
used has a diameter equal to specimen thickness,
then the first order effect of changing thickness
simply increases the separation between zones
while holding the width of the bands fixed.

5. Pitfalls and uncertainties

5.1. Cautions involving specimens and contrast

transfer

In this section, we discuss effects warranting
caution. In the next section, models of lattice
parameter uncertainty are discussed.
High electron beam intensities can cause lattice

rearrangement in sufficiently small nano-crystals,
as well as changes in the orientation of a thin film
(e.g. due to differential expansion). Sequential
images of the same region at fixed tilt might allow
one to check for such specimen alterations.
Loss of periodicities in the recorded image, due

to damping and spherical aberration zeros, were
discussed in the section above on experimental
design. Nonetheless, careful observations of more
than one crystal, and image simulation as well,
may be useful adjuncts whenever this technique is
applied. We illustrate this below, with a ‘‘two-
dimensional’’ experiment done to assess the size of
errors due to finite crystal size and random

orientation. The result is of help in the section
on modeling uncertainties that follows.
A recent paper on HREM image simulations

[38] indicated that deviations in orientation of a
2:8 nm spherical palladium nano-crystal from the
zone axes may result in fringes unrelated to the
structure of the particle. Variability in measured
lattice spacings was also reported to be as high
as several percent, with the highest reaching 10%.
To compare such results with our experimental
data, 23 single crystals free of overlap with
other crystals, and each showing cross-fringes,
were examined. The projected sizes of these
crystals range from 3:7 nm� 3:8 nm to 10:8 nm�
7:8 nm: The spacings and angles between fringes
are plotted in Fig. 7.
Observed cross-fringes in the HREM images fall

into two categories, according to their spacings
and angles. The first category is characterized by a
901 interplanar angle between two 2:12 (A lattice
spacings. The second one by two interplanar
angles of 551; 701 and three lattice spacings of
2.12, 2.12, 2:44 (A: Only the spacings of 2.44 and
2:12 (A and the corresponding angle of 551 have
been shown in Fig. 7. Two conclusions can be
drawn.
First, since the two categories of cross-fringes

match those along the [0 0 1] and [0 1 1] zone axes
of WC1�x; the only two zones which show cross-
lattice fringes in our HREM images, the thin film
consists mainly of WC1�x: X-ray powder diffrac-
tion work on the film supports this conclusion [41].
Secondly, for nano-crystals free of overlap with

other crystals, the observed lattice spacings and
interplanar angles in HREM images have a
standard deviation from the mean of less than
1.5%, and a standard deviation of less than 1:31;
respectively. We have not observed any seriously
shortened or bent fringes. Nonetheless we recom-
mend that such fringe abundance analyses go hand
in hand with stereo lattice studies of nano-crystal
specimens, and that comparative image simulation
studies be done where possible as well.

5.2. Uncertainty forecasts

Earlier estimates [6], as well as the typical size of
diffraction broadening in the TEM, suggest that
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lattice parameter spacing errors may in favorable
circumstances be on the order 1%, and angle
errors on the order of 11: Experiment, and a more
detailed look at the theory [33], now support this
impression. We will focus the discussion here on
equant or spherical nano-crystals. The results
should be correct within 10% for other (e.g.
thin-foil) geometries of the same thickness.
The three sources contributing to the lattice

spacing measurement uncertainty in images are:
expansion of the reciprocal lattice spot in the
image plane, uncertainty in the camera constant,
and expansion of the reciprocal lattice spot along
the electron beam direction, in order of decreasing
relative effect [33]. The uncertainty in our camera
constant is measured to be about 0.5%. Uncer-
tainties from the first and third sources above are
on the order of 1% and 0.01%, respectively, for a
typical lattice spacing of 0:2 nm: The in-plane/out-
of-plane error ratio is on the order of 10.
Sources contributing to the measurement un-

certainty of lattice parameters along the electron

beam direction, when the specimen is un-tilted,
include uncertainty in goniometer tilt as well as
sources analogous to those above. Observation of
reciprocal lattice vectors further out of the speci-
men plane (i.e. of fringes at high tilt) reduces
the measurement uncertainty of ‘‘out-of-plane’’
parameters. The measurement uncertainty of
interplanar angles in images is due to lateral
uncertainty in their associated reciprocal lattice
spots in the image plane.
Using a mathematical model of these errors [33],

we predict spacing uncertainties in a 10 nm nano-
crystal, tilted by 7181; of 2.1% for an imaged
spacing and of 8.6% for a lattice parameter
perpendicular to the plane of the untilted speci-
men. This large out-of-plane uncertainty is a result
of the small tilt range available with our high-
resolution pole piece. The estimated interplanar
angle uncertainty is about 2:31: These predicted
uncertainties [33] are between 2 and 3 times the
errors observed here, and hence of the right order
of magnitude.

Fig. 7. The spacings and interplanar angles measured from the cross lattice fringes of 23 nano-crystals free of overlap with other

crystals in the HRTEM images. The specific combinations of lattice spacings and interplanar angles corresponds to the [0 0 1] and

[0 1 1] zone images of WC1�x and hence indicate WC1�x being the only present phase in the thin film. The measured lattice spacings

have a standard deviation from their mean of less than 1.5%, and interplanar angles have a standard deviation of 1:21:
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The model suggests that lattice parameter
uncertainties will decrease as camera constant
and tilt uncertainties decrease, and will also
decrease as the tilt range used for the measurement
increases. It suggests that the lattice parameter
errors will increase as crystal thickness goes down.
The ease of locating spacings, however, goes up as
crystal thickness decreases. Hence the best candi-
dates for application of the protocols here may be
crystals in the 1–20 nm range. Improved tilt
accuracy (hopefully with computer guidance),
and low-vibration tilting so that fringes may be
detected as orientation changes, would make these
strategies more accurate and widely applicable as
well.

6. Summary and discussion

When considered from the perspective of direct-
space imaging, crystals offer a discrete set of
opportunities for measuring their lattice para-
meters in three dimensions. Enumerating those
opportunities for candidate lattices, or lattice
classes, opens doors to the direct experimental
determination of nano-crystal lattice parameters in
3D. A method for doing this, and lists of those
opportunities for the special case of cubic crystals,
are presented here.
We apply this insight to inferring the 3D lattice

of a single crystal from electron phase or Z-
contrast images taken at two different orienta-
tions. For nano-crystals in particular, a double-
axis tilt range of7181 allows one to get such data
from all correctly oriented cubic crystals with
appropriate spacings resolvable in a pair of images
taken from directions separated by 35:31: In the
experimental example presented, we find less than
1:5% spatial and 1:61 angular disagreements
between the inferred primitive cell lattice para-
meters of a 10 nm WC1�x nano-crystal, and
literature values.
We further present data on the variability of

lattice fringe spacings measured from images of
such randomly oriented 10 nm WC1�x crystals in
electron phase contrast images. The results suggest
that measurement accuracies of 2% in spacing and
21 in angle may be attainable routinely from

particles in this size range. Smaller size crystals
may be easier to obtain data from, but show larger
uncertainties, while larger or non-randomly or-
iented crystals (especially if guesses as to their
structure are unavailable) may be more challen-
ging to characterize in three dimensions.
Precise knowledge of the tilt axes, as projected

on the plane of a micrograph, is crucial to
implementation. This information, if coupled with
on-line guidance on how to tilt from an arbitrary
two-axis goniometer orientation in any desired
direction with respect to the plane of an image or
diffraction pattern, could make this strategy and
related diffraction strategies [16] for lattice para-
meter measurement more routine. Future micro-
scopists might then be able to interface to
individual nanocrystals much as the nano-geolo-
gist in the second paragraph of this paper
examined a ‘‘hand specimen’’.
Although these high-angle tilt protocols may be

of limited use in diffraction, they show promise in
darkfield imaging. For example, imagine darkfield
images of a polycrystalline Al film taken at two
tilts, with three operating reflections chosen
according to one of the fcc protocols of Fig. 2.
Grains in diffracting condition for any two of the
darkfields are likely to also be diffracting in the
third. Thus grain–grain correlations in such image
triplets might be useful for analyzing the mix of
lattice structures in a film, as well as in finding
grains correctly oriented for the kind of HREM
oriented basis triplet determination described here.
Because such lattice-correlations in three dimen-
sions contain information beyond the pair-correla-
tion function, high-tilt image correlations
(darkfield or HREM) might also offer data
complementary to that generated by the new
technique of fluctuation microscopy [46–48] in
the study of paracrystalline specimens like eva-
porated silicon and germanium [49,50], whose
order range is too small for detection by other
techniques.
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Appendix A. Effective tilt axis azimuth

Let ðW1;W2Þ and ðW01;W
0
2Þ denote orthogonal tilt

values for two specimen orientations, and feff the
azimuth of the effective tilt axis between these
orientations. Any reciprocal lattice vector with
untilted Cartesian coordinates jgS; and with
identical micrograph coordinates jgmS at the two
tilted orientations, will (following Eq. (4)) obey

AðW1;W2ÞjgmS ¼ jgS ¼ AðW01;W
0
2ÞjgmS; ðA:1Þ

where

jgmS ¼

g cosðjeff Þ

g sinðjeff Þ

0

0B@
1CA: ðA:2Þ

Expanding, this gives three equations which,
combined with Eq. (A.2) gmy ¼ gmxtanðjeff Þ; can
be solved for the three unknowns W01;W

0
2;jeff ; to get

W01 ¼ �W1; W02 ¼ �W2 ðA:3Þ

and

jeff ¼ tan
�1 �

sinðW1Þ
tanðW2Þ

� �
: ðA:4Þ

This provides an equation for the azimuth of the
effective tilt, and confirms that symmetry about
the zero tilt position is a necessary and sufficient
condition for the reciprocal lattice vector jgS; and
its associated lattice fringe, to show a common
direction in micrographs at both tilts.
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